10 research outputs found

    Deep Intellectual Property: A Survey

    Full text link
    With the widespread application in industrial manufacturing and commercial services, well-trained deep neural networks (DNNs) are becoming increasingly valuable and crucial assets due to the tremendous training cost and excellent generalization performance. These trained models can be utilized by users without much expert knowledge benefiting from the emerging ''Machine Learning as a Service'' (MLaaS) paradigm. However, this paradigm also exposes the expensive models to various potential threats like model stealing and abuse. As an urgent requirement to defend against these threats, Deep Intellectual Property (DeepIP), to protect private training data, painstakingly-tuned hyperparameters, or costly learned model weights, has been the consensus of both industry and academia. To this end, numerous approaches have been proposed to achieve this goal in recent years, especially to prevent or discover model stealing and unauthorized redistribution. Given this period of rapid evolution, the goal of this paper is to provide a comprehensive survey of the recent achievements in this field. More than 190 research contributions are included in this survey, covering many aspects of Deep IP Protection: challenges/threats, invasive solutions (watermarking), non-invasive solutions (fingerprinting), evaluation metrics, and performance. We finish the survey by identifying promising directions for future research.Comment: 38 pages, 12 figure

    Direction Finding for Passive Bistatic Radar in the Presence of Multipath Propagation

    No full text
    In the case of multipath propagation for passive bistatic radar (PBR) using uncooperative frequency agile-phased array radar as an illuminator, a new direction-finding method is proposed to deal with the scenario where the coherent and uncorrelated signals are closely spaced or in the same direction. Firstly, spatial difference technique is used to eliminate uncorrelated signals. Then, in order to avoid the cross-terms effect and improve the resolution of coherent signal, the iterative adaptive method (IAA) is adopted for the rearranged spatial difference matrix. Finally, the direction of arrival (DOA) of the target signal is obtained by the reconstruction of the interference-plus-noise covariance matrix. Compared with previous studies, this method has better performance in the case of low signal-to-noise ratio (SNR) and limited number of snapshots

    Weak Target Detection Method of Passive Bistatic Radar Based on Probability Histogram

    No full text
    Passive bistatic radar (PBR) has attracted widespread attention for its capabilities in dealing with the threat of electronic countermeasure, stealth technology, and antiradiation missile. However, passive detection methods are limited by unknown characteristics of the uncooperative illuminators, and conventional radar signal processing algorithms cannot be conducted accurately, especially when the carrier frequency of the transmitting signal is agile and the signal-to-noise ratio (SNR) in the scattered wave of target is low. To address the above problems, this paper presents a novel weak target detection method based on probability histogram, which is then tested by a field experiment. Preliminary results indicate the feasibility of the proposed method in weak target detection

    A CNN with Noise Inclined Module and Denoise Framework for Hyperspectral Image Classification

    Full text link
    Deep Neural Networks have been successfully applied in hyperspectral image classification. However, most of prior works adopt general deep architectures while ignore the intrinsic structure of the hyperspectral image, such as the physical noise generation. This would make these deep models unable to generate discriminative features and provide impressive classification performance. To leverage such intrinsic information, this work develops a novel deep learning framework with the noise inclined module and denoise framework for hyperspectral image classification. First, we model the spectral signature of hyperspectral image with the physical noise model to describe the high intraclass variance of each class and great overlapping between different classes in the image. Then, a noise inclined module is developed to capture the physical noise within each object and a denoise framework is then followed to remove such noise from the object. Finally, the CNN with noise inclined module and the denoise framework is developed to obtain discriminative features and provides good classification performance of hyperspectral image. Experiments are conducted over two commonly used real-world datasets and the experimental results show the effectiveness of the proposed method. The implementation of the proposed method and other compared methods could be accessed at https://github.com/shendu-sw/noise-physical-framework

    Deep Unfolding Sparse Bayesian Learning Network for Off-Grid DOA Estimation with Nested Array

    No full text
    Recently, deep unfolding networks have been widely used in direction of arrival (DOA) estimation because of their improved estimation accuracy and reduced computational cost. However, few have considered the existence of a nested array (NA) with off-grid DOA estimation. In this study, we present a deep sparse Bayesian learning (DSBL) network to solve this problem. We first establish the signal model for off-grid DOA with NA. Then, we transform the array output into a real domain for neural networks. Finally, we construct and train the DSBL network to determine the on-grid spatial spectrum and off-grid value, where the loss function is calculated using reconstruction error and the sparsity of network output, and the layers correspond to the steps of the sparse Bayesian learning algorithm. We demonstrate that the DSBL network can achieve better generalization ability without training labels and large-scale training data. The simulation results validate the effectiveness of the DSBL network when compared with those of existing methods

    Feasibility Study of Passive Bistatic Radar Based on Phased Array Radar Signals

    No full text
    This paper presents the concept of a passive bistatic radar (PBR) system using existing phased array radar (PAR) as the source of illumination. Different from PBR based on common civil illuminators of opportunity, we develop an experimental PBR system using an high-power air surveillance PAR with abundant signal modulation forms as the transmitter. After the introduction of the PBR system and PAR signals, it can be concluded that the agility of the waveform parameters of PAR signal brings two problems to the signal processing of the PBR systems, which are not discussed in conventional PBR systems. The first problem is the time and frequency synchronization of the system, so we propose a direct wave parameter estimation method based on template matching to estimate the parameters of the transmitted signal in real time to achieve time and frequency synchronization of the system. The second problem is the coherent integration for moving target detection and weak target detection, so we propose a coherent integration method based on Radon–Nonuniform Fast Fourier Transform (Radon-NUFFT) to deal with the problems introduced by the agile waveform parameters. Preliminary results from the field experiment demonstrate the feasibility of the PBR system based on PAR signals, and the effectiveness of the proposed methods is verified

    Convolution Neural Networks for Localization of Near-Field Sources via Symmetric Double-Nested Array

    No full text
    We present the convolution neural networks (CNNs) to achieve the localization of near-field sources via the symmetric double-nested array (SDNA). Considering that the incoherent near-field sources can be separated in the frequency spectrum, we first calculate the phase difference matrices and consider the typical elements as the inputs of the networks. In order to guarantee the precision of the angle-of-arrival (AOA) estimation, we implement the autoencoders to divide the AOA subregions and construct the corresponding classification CNNs to obtain the AOAs of near-field sources. Then, we construct a particular range vector without the estimated AOAs and utilize the regression CNN to obtain the range parameters of near-field sources. The proposed algorithm is robust to the off-grid parameters and suitable for the scenarios with the different number of near-field sources. Moreover, the proposed method outperforms the existing method for near-field source localization
    corecore